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We discuss the results of extensive numerical simulations in order to estimate 
the scaling exponents associated with kinetic roughening in higher dimensions, 
up to d = 7  + 1. To this end, we study the restricted solid-on-solid growth 
model, for which we employ a novel fitting ansatz for the spatially averaged 
height correlation function (7(t)~ t 2/~ to estimate the scaling exponent ft. Using 
this method, we present a quantitative determination of fl in d=  3 + 1 and 4 + 1 
dimensions. To check the consistency of these results, we also compute the inter- 
face width and determine fl and • from it independently. Our results are in 
disagreement with all existing theories and conjectures, but in four dimensions 
they are in good agreement with recent simulations of Forrest and Tang for a 
different growth model. Above five dimensions, we use the time dependence of 
the width to obtain lower bound estimates for ft. Within the accuracy of our 
data, we find no indication of an upper critical dimension up to d=  7 + 1. 
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1. I N T R O D U C T I O N  

D y n a m i c a l  b e h a v i o r  of  in te r faces  in r a n d o m  m e d i a  cons t i t u t e s  a f u n d a m e n -  

tal p r o b l e m  is s ta t i s t ica l  mechan ic s ,  (~) w i th  app l i c a t i ons  to, e.g., f luid 

mechan ics , / z3 )  sur face  g r o w t h ,  (4'5) p o l y m e r  physics ,  (6~ a n d  m a g n e t i c  flux 

l ines in s u p e r c o n d u c t o r s .  (7) F o r  a ve ry  la rge  class of  phys i ca l  sys tems,  the  

essent ia l  phys ics  a s soc i a t ed  wi th  the  d y n a m i c s  o f  such  objec ts  can  be  
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described in the continuum language by the Kardar-Paris~Zfiang (KPZ) 
equation(4,8): 

Oh 2 
Ot = vV2h + -2 (Vh)2 + t/(r, t) + # (1) 

In particular, for many simple ballistic growth models Eq. (1) is now 
widely accepted to be the relevant mapping in the continuum limit. (1'9) For 
these models, Eq. (1) has a particularly transparent physical interpretation: 
the height variable h(r, t) describes a growing interface on a (d~ = d -  1)- 
dimensional hyperplane, # is a constant driving force, and v and 2 describe 
the effects of surface tension and lateral growth velocity, respectively. The 
random variable r/is Gaussian and satisfies 

Q/(r, t) r/(r', t') ) = 2D6ds(r -- r') 3(t -- t') (2) 

with D describing local variations in the deposition rate. 
The properties of the K P Z  equation are usually described through the 

first two moments of the associated probability distribution function of the 
variables {h(r, t)}. Namely, the average interface height h ( t ) - ( h ( r ,  t ) )  
grows linearly in time, while the surface width w(L, t), which is defined as 
the standard deviation of heights 

w2(L, t) = f dr [h(r, t) - [z(t)]2/L ds (3) 

displays nontrivial scaling behavior as a function of time and the linear 
system size, (4, 8,10) 

L z / t \  w ( L , t ) ~  'ft~) (4) 

The scaling function f ( x )  oc x t~ for x ~ 1, with fl = 2/z, and becomes constant 
for x >> 1. The K P Z  equation also satisfies an exact invariance under a 
"Galilean" transformation, which leads to the identity X + z = 2, (2,54,8) and 
leaves only one independent scaling exponent to be determined. 

The scaling indices fl, Z, and z for the KPZ equation are exactly 
known in d =  1 + 1 dimensions, where the fluctuation-dissipation relation 
and Galilean invariance amalgamate to yield f l(2)= 1/3, Z(2)= 1/2, and 
z(2) = 3/2. (1'2'4'8) These numbers have also been consistently obtained from 
direct integrations of the (discretized) KPZ  equation (11a2) and simulations 
of ballistic growth models, (1'9'13-15) implying universal behavior as 
embodied by the KPZ  equation. In addition to the exponents, the scaling 
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function has recently been calculated numerically using self-consistent 
mode coupling equations. ~16) The concept of universality between different 
models has further been strengthened by recent calculations, where certain 
amplitude ratios have been shown to be universal for several ballistic 
growth modelsY 7-~9) 

In higher dimensions, where no fluctuation-dissipation relation exists 
to fix Z and where the dynamical renormalization group efforts at the 
strong coupling fixed point fail, exact results are few. Only the weak 
coupling (ideal interface) case where 2 = 0 is exactly known, ~z~ together 
with the dynamical exponent zc = 2 at the roughening transition of the 
KPZ equation to this smooth phase above d >  2 + 1. ~22) Not surprisingly, 
then, a wealth of approximate analytic schemes ~'23-25) and numerical 
simulations(l'9'll' 12,14,15,26,27) have been employed to evaluate the scaling 
exponents and their behavior in higher dimensions. However, the situation 
remains unsettled. In particular, both recent functional renormalization 
group calculations by Halpin-Healy t23) and 1/d expansions results of Cook 
and Derrida ~z4) indicate the existence of an upper critical dimension du 
above which the strong-coupling phase vanishes and z = 2, /3 = X = 0. In 
Halpin-Healy's theory, du = 4 + 1. 

Numerical simulations of various realizations of the KPZ equation 
also give contradictory results. (~) Direct attempts to solve the discretized 
KPZ equation have apparently been riddled by stability problems, and 
rather different results have been reported. (11'~2) Neither have the results 
from simulations of directed polymers in random media (1'26"2v) nor various 
ballistic growth models (~'9'14) converged. One of the most serious recent 
attempts to determine the scaling exponents has been the conjecture of 
Kim et a/., (14) which was based on numerical results obtained for 
the restricted solid-on-solid growth (GRSOS) model. According to this 
conjecture, 

1 2 , ,, 2 ( d +  1) 
= a + l '  z ( d )  = d+----5' = -YT  (5) 

which is correct at d=  0 + 1 and 1 + 1, and implies no finite upper critical 
dimension in the problem. However, this result has been seriously 
challenged by large-scale simulations of Forrest et aL (9) on a hypercube 
stacking model, from which they obtained /3(3)=0.240(1) and /3(4)= 
0.180(5), which are slightly but distinctly lower than the predictions of 
Eq. (5). To add to the confusion, Kim e ta / .  (27) have recently done addi- 
tional studies of the directed polymer problem, with results in accordance 
with Eq. (5) at three and four dimensions. 

The purpose of the present work is to try to answer some of the open 
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questions regarding the KPZ equation in higher dimensions. The first and 
the most basic one concerns the actual values of the scaling exponents. 
A related question is the controversy between the results of Forrest eta/.  (9) 

and the conjecture of Eq. (5). This is particularly important in addressing 
the question of universality between ballistic growth models beyond two 
dimensions. A third question concerns the existence of an upper critical 
dimension. The only numerical work which to our knowledge has 
addressed this is the directed polymer simulation of R e n z  (26) (see also 
ref. 1), which shows no indication of du up to six dimensions. 

To address all these questions, we have undertaken new numerical 
simulations of the GRSOS model in higher dimensions, up to d =  7 + 1. 
In this work, we shall concentrate on dimensions d>~ 3 + 1, where the 
original work of Kim et  a/. O4) was most seriously affected by finite-size 
effects, and where possible deviations from Eq. (5) could be most clearly 
seen. In particular, we have developed a new way of extracting the growth 
exponents using a fitting ansatz (15) for the equal-time height correlation 
function G(r, t). This fitting ansatz is first tested in two dimensions, 
and then applied to extensive numerical simulations in d =  3 + 1, where 
we have obtained fl with great accuracy. Our most accurate estimate, 
fl(4)=0.180(2) is well below the prediction of the conjecture (5), but 
in remarkably accurate agreement with the results of Forrest et  aL, (9) 
indicating universality between these two growth models. The numerical 
value of fl(4) is further supported by standard determinations of fl(4) and 
Z(4) from the surface width w(L, t), for a variety of system sizes. Further- 
more, we have used the surface width in d =  4 + 1 to similarly obtain an 
estimate for fl(5) and Z(5). Above five dimensions, where finite-size effects 
become prohibitively difficult to overcome, we have simply used the slope 
of the growing surface width to obtain at least lower bound estimates for 
ft. Since relatively well-defined power laws are found in each case, we find 
no indication of d, up to eight dimensions. Finally, we also discuss briefly 
how our fitting ansatz can be used to study the question of amplitude 
universality. 

2. THE G R O W T H  M O D E L  

We define the restricted solid-on-solid growth (GRSOS) model as a 
ballistic growth model, where particles of height unity are randomly 
deposited on an intially flat surface .  (14) The essential feature of the model 
is the condition that for local growth to occur, the height differences 
between all the 2ds nearest neighbor columns (on a hypercubic lattice) 
must satisfy the condition [Ah] ~< 1. If this condition is violated, the deposi- 
tion attempt is aborted; however, no other desorption events can take 
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place. Thus, in the computer simulations each Monte Carlo step (MCS) 
consists of L ds random deposition attempts. We note that neither parallel 
nor sublattice growth algorithms have been used in the present study. 

Extensive studies of the GRSOS model have shown (14) that the condi- 
tion [Ah[ ~< 1 leads to a very rapid approach of the surface width and other 
relevant quantities toward nontrivial scaling behavior, which in two dimen- 
sions recovers the exact KPZ exponents. Moreover, recent explicit numeri- 
cal determinations of 2 in two and three dimensions (13'1v'18) and studies of 
universal amplitude ratios in d = l  + i (17'19) have further solidified the 
relation of the GRSOS model to the KPZ equation. Furthermore, similarly 
to the closely related hypercube stacking model, C9) the GRSOS interface 
can be described in terms of a waiting time distribution, which corresponds 
to the discrete directed polymer mapping of the KPZ equation. Thus, 
even beyond two dimensions, we expect the GRSOS model to be able to 
describe the strong-coupling behavior of the KPZ equation. 

3. A N E W  M E T H O D  OF E X T R A C T I N G  THE 
SCALING E X P O N E N T S  

As mentioned in the Introduction, there exists a body of numerical 
work which has aimed at the quantitative evaluation of the scaling 
exponents. This can in principle done in at least three different ways: 
(i) trying to solve a discretized version of the KPZ equation directly by 
numerical iteration, (ii) simulating the directed polymer mapping of the 
KPZ equation at zero temperature, or (iii) simulating a discrete growth 
model which belongs to the same universality class as the KPZ equation. 
Most attempts to date have been based on (iii)(1); however, some models 
are apparently plagued by severe crossover and finite-size effects, which i n  
part have contributed to the discrepancies reported in the literature. A 
related problem in the existing numerical studies lies in the actual methods 
used to extract the exponents. In almost all previous numerical works (1)/~ 
and • have been determined using the relations w ( t ) ~  t ~ and w ( L ) ~  L x. 
However, is has been shown (14) that the slope of the time-dependent surface 
width tends to underestimate fl due to a finite-size correction. Instead, the 
spatially averaged correlation function 

(7(t) = (G(r, t) ) r ~ t 2l~ (6) 

where 

G(r, t) = ( [h(x  +r,  t ) - h ( x ,  t)]2)x (7) 

and the average ( . ) r  taken in the asymptotic regime of r >> t l/z, has been 
shown to give very good estimates of/~ even for relatively small system 
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sizes. This is due to the fact that G(t) averaged over larger distances only 
lacks short-wavelength components, which are irrelevant for the asymptotic 
behavior. There is an additional advantage of using the correlation function, 
because asymptotically 

~r 2z for r ~ t  ~/~ 
G ( r ' t ) ~ { t 2 #  for r>>t 1/~ (8) 

Thus, it is also possible to obtain independent estimates of Z and z directly 
from the same set of data, as we will discuss below. 

However, when using G(t) there exists a fundamental problem in 
determining the onset of the asymptotic regime which is to be used for 
obtaining G(t). In practice this means introducing a time-dependent cutoff 
parameter, which is somewhat arbitrary. To overcome this problem, and to 
utilize fully the information contained in the correlation function, we have 
developed a novel fitting ansatz for the correlation function (7) as ~15) 

~(r, t) = a(t){tanh[b(t)l/Xr2Z(t)/~] }x (9) 

where a(t), b(t), and )~(t) are fitting parameters, and x is fixed. This 
functional form is motivated by the limiting behavior of the correlation 
function. Namely, for each fixed time 1 ~ t ~ L z, G(r, t) = a(t)b(t)r  2ilt) for 
r ~ 0, while G(r, t) = a(t) for r ~ oo. Thus, after fixing x, we can use Eq. (9) 
to fit the whole function G(r, t). First, this gives us 

G( t) '~ a( t) ~ r 2~ (10) 

from which /~ can be immediately obtained without a cutoff parameter. 
Moreover, the fitting gives us an independent estimate for ~ ~ Z, as can be 
seen from Eq. (8). The third scaling exponent z ~ ~ can also be obtained by 
defining a radius (14) 

r~ ( t )~ t  1/~ (11) 

through the condition that G(rc(t), t ) =  ca(t),,~ cG(t), where c < 1 is fixed. 
By carefully studying the dependence of ~ on c, it should be possible to 
estimate z rather accurately, if the ansatz (9) is reliable. We note that 
Eq. (9) offers by no means a unique choice for the ansatz. Nevertheless, it 
is in a convenient form for fitting the correlation radius re(t) accurately by 
varying x, which was also explicitly tested not to affect the value of a(t) as 
obtained from the fits. However, the influence of other functional forms 
was not studied here. 
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4. RESULTS 

4.1. d = l  +1  

To test the method of fitting the correlation function using the ansatz 
(9), we first consider the two-dimensional case, for which fl(2)= 1/3 and 
~(2) = 1/2 are exact. To this end, we chose to simulate a L = 3000 system, 
which is relatively small, for which we determined G(r, t) accurately by 
averaging over 3000 independent runs, up to 800 Monte Carlo steps 
(MCS) per site. Standard least squares fitting was then performed to fit to 
Eq. (9), with x = 1. In Fig. la we show typical results. The quality of the fits 
is excellent, and fitting to the a(t) vs. t curve shown in the inset of Fig. la 
between 100 ~< t ~< 530 MCS, we obtain 

fl(2)=0.3324(7) (12) 

To compare with the standard method of obtaining fl, we also calculated 
the surface width w(t). The analysis of the data is conveniently aided by 
defining running exponents, which describe local variations in the data: 

log[G(t + n)] - log[G(t)] 
/~t- (13) 

2 log(n) 

where n can be a constant time step, or n = t .  (9) The definition for w(t) is 
completely analogous. In Fig. lb we show a comparison of the running 
exponents between the two quantities. As can clearly be seen, results from 
the width indeed tend to underestimate the true value of fi, giving about 
0.327(2). We also tested the effect of the convolution ansatz ~9) to both 
quantities, which improved results from the width to fl(2)=0.330(3). 
Correspondingly, from a(t) the result was fl(2)= 0.335(2). 

To check further the quality of the fitting ansatz, we also monitored 
the behavior of the fitting parameter ~t as a function of time, as shown 
in Fig. lc. After an initial transient there is a plateau which coincides 
with the best scaling regime for a(t). Averaging over this region gives 
~(2) =0.498(5), which is very close to the exact value of 1/2. Similarly, 
estimating 2(2) with c = 0.9 gives 1.503(2), and thus fl(2) ~ ;~(2)/~(2) ~ 0.331. 
In addition, the Galilean invariance relation is satisfied very accurately, 
with 

;~(2) + ~(2) ~ 2.001 (14) 

We note that using the standard methods of obtaining the scaling 
exponents, much larger system sizes are needed for comparable accuracy of 
the results. 
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4.2. d = 3 + 1  

In four dimensions, we performed extensive simulations of systems of 
several sizes: L = 6 4 ,  100, 150, 190, and 250. We shall first describe our 
most accurate results, which are for L = 100, where both the correlation 
function and the width were averaged over 2400 independent runs of up to 
400 MCS/site, with additional test runs up to 800 MCS. In Fig. 2a we 
display results obtained from using the fitting ansatz with x = 1/2, while 
Fig. 2b shows running exponents [from Eq. (13)] from a(t). The quality of 
the correlation function fits is again excellent, and a least squares fitting 
procedure between 120 ~< t ~< 350 MCS gives 

/3(4)=0.180(2) (15) 

which is also the result of averaging over the running exponents of Fig. 2b. 
Furthermore, the fitting parameter )?t in Fig. 2c again displays a plateau, 
from which )?(4)= 0.294(3). To obtain f(4) as well, we carefully checked its 
dependence on c for 0.80 ~<. c ~< 0.99. An average over c = 0.85, 0.9 and 0.95 
gives 1.709(9), from which the invariance relation becomes 

)?(4) + 2(4) ~ 2.003 (16) 

This high-precision check on the Galilean invariance relation strongly 
supports the consistency of the fitting ansatz in these higher dimensions. 
However, estimating/?(4) ~ )?(4)/~(4)~ 0.172 demonstrates that )?(4) under- 
estimates the real Z(4), as we shall directly show below. 

For an independent consistency check of our results, we also deter- 
mined Z(4) directly by calculating the width w(L),,~L x in the saturated 
regime of t,> L = for L = 5, 10, 15, 20, 25, 30, 35, 40, 50, and 60. Averaging 
over independent configurations was done until the results seemed to 
converge, with error bars estimated from variations between consecutive 
runs. Results for w(L) are shown in Fig. 3. Despite considerable efforts, 
fluctuations in the data for the larger systems (especially for L = 6 0 )  
remained, which demonstrates the difficulty of a precise determination of )~ 
with this metho& Nevertheless, for small system sizes we were able to 
assess the finite-size effect. Namely, X(4) starts out near the value of 0.300, 
increasing with system size up to about 0.31. Our best estimate from a 
simple least squares fit for 20 ~ L ~< 50 is 

X(4) ~ 0.308(2) (17) 

which, however, does not include finite-size effects in a systematic manner. 
Thus, the error bar is perhaps not realistic. Nevertheless, this result in 
considerably larger than that obtained for )?(4), demonstrating the 
approximate nature of the fitting ansatz (9). However, using the direct 
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estimate of ;~(4) above together with the Galilean invariance relation yields 
/~(4)~0.182, which is now fully consistent with the correlation function 
data of Eq. (15). 

Despite the apparent consistency of the results presented above, we 
cannot completely rule out the influence of finite-size effects on the value of 
//(4). To further study this question, we performed additional simulations 
for L = 64 (3000 runs), L = 150 (75 runs), L = 190 (100 runs), and L = 250 
(two runs). The correlation function fits were performed for L = 64, 150, 
and 190; for L = 250 only the time-dependent width was computed. Except 
for the smallest system, for which the running exponents approach the 
value of 0.18 from below (15) (see also Fig. 5), the data from G(t) were 
simply not good enough for an accurate determination of//(4). Nevertheless, 
estimating a(t) between 50~< t ~< 400 MCS from a fit to the L = 190 data 
gives //(4)=0.185_+0.013, which is consistent with the above results. 
However, we can obtain a better grip on the systematic finite-size effects 
through the direct dependence of the slope of the width w(t) on L. In 
Fig. 4a we show a comparison of w(t) for all the system sizes studied here, 
with running exponents for L = 100 shown in Fig. 4b. Using least squares 
fits for each case, we can summarize the results as 

0.173(1) for L = 6 4  

J0.1762(2) for L =  100 

f l (4)=~0.179(5)  for L = 1 5 0  

/0.180(5) for L = 1 9 0  

k0.182(1) for L = 2 5 0  

(18) 
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The details of the fits are as follows: for L = 64, 20 ~< t ~< 150 MCS; for 
L = 1 0 0 ,  50~<t~<350MCS; for L = 1 5 0 ,  the result is from two fits for 
25 ~< t ~< 400 MCS; for L = 190, fitting for 50 ~< t ~< 400 MCS and 400 ~< t ~< 
840 MCS yields /~(4)=0.177(1) and 0.183(2), respectively, the average of 
which is 0.180; and finally for L = 250, 30 ~< t ~< 320 MCS, where the best 
scaling regime was found. Remarkably enough, at least for the range of 
system sizes studied here, the scaling exponent /~(4) seems to saturate 
around 0.18, which is again fully consistent with 0.180(2) as obtained from 
the L = 100 system using the fitting ansatz. We must note, however, that 
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there are significant fluctuations in the data of the largest systems for 
w(L, t), which is reflected in the sensitivity of the value of/~(4) to the choice 
of the fitting regime. Thus, the numbers quoted in Eq. (18) beyond L = 100 
should not be taken as reliable quantitative estimates, but rather as 
supporting our best estimate of/~(4) = 0.180(2). Nevertheless, if we use the 
data of Eq. (18) and assume that the usual 1/L finite-size scaling holds, an 
extrapolation to 1/L ~ 0 gives a slightly larger value of/~(4) ~ 0.184. 

In analogy to the two-dimensional case, we also attempted to use the 
convolution ansatz for improving results obtained from the widths. Rather 
surprisingly, however, this did not yield any improvements--e.g., for our 
best data for L=100 ,  /~(4)=0.17(1) was obtained, with rather poor 
accuracy. Similarly, for L =  190, /~(4)~0.185. Our results clearly indicate 
that even up to L = 190, there are additional time-dependent terms present 
in w2(t) besides a constant "intrinsic width. ''(9) 

The remarkable feature of the result (15) is that it is considerably 
smaller than that obtained by Kim et  aL, (14) who estimated /~(4)=0.20 
using a 643 system. The essential difference between their results and ours 
lies in the definition of time, for which they used the average height/~(t) 
intead of the Monte Carlo time t. Namely, it has been shown that there is 
a finite-size correction to /~(t), such that it only becomes directly propor- 
tional to time in the thermodynamic limit. (28) To compare our results 
directly with Kim et  aL, (14) we analyzed carefully our data for the 643 
system. (~5/ In Fig. 5 we summarize the results of this analysis, depicting 
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Fig. 5. Running exponents from a(t) [Eq. (13)] for a 643 system using Monte Carlo time 
(circles) and the average height/~(t) as definitions of time. 



4.3. d = 4 + 1  

(a) 

In five dimensions, our analysis parallels that of the four-dimensional 
case. However, only three system sizes were considered: L = 20 (3500 runs), 
L = 50 (100 runs), and L =  70 (three runs). The analysis of the correlation 
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running exponents from a(t) [again from Eq. (13)] using either MCS or 
h(t) as a definition of time. The latter clearly yields a larger value for 
fl(4) ~0.19,  which may explain the reason for the discrepancy. 
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Fig. 6. (a) The surface width for all three five-dimensional systems. The curves have been 
shifted for clarity. (b) Running exponents [from Eq. (13)] for L = 5 0  (filled circles) and 
L = 70. 
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functions proved not to be feasible, due to large fluctuations in the data. 
Thus, we determined /?(5) simply by a least squares fit to w(t), which is 
shown in Fig. 6a. The results are 

~ 0 . 1 2 4 ( 8 )  for L = 2 0  

/?(5)=~0.135(2) for L = 5 0  

~0.139(2) for L = 7 0  

(19) 

Since there is a clear dependence of/?(5) on system size, we also analyzed 
the behavior of the running exponents for L = 50 and 70, which are shown 
in Fig. 6b. For L = 7 0 ,  the result quoted above comes from 50~<t~< 
400 MCS; however, due to a big fluctuation clearly visible in Fig. 6, some- 
what larger values of the running exponents are obtained at the latest 
times, e.g.,/?(5) = 0.150(1) for 200 ~< t ~< 400 MCS. Thus we cannot pinpoint 
the value of/?(5) as accurately as for lower dimensions, 

As a consistency .check,. we also calculated the size-dependent 
saturated width w(L), which is shown in Fig. 7 for L = 5, 10, 15, 18, 20, 23, 
35, and 30. The fluctuations in the d a t a  are clearly visible, but by simply 
fitting for the six largest systems we estimate 

Z(5)~0.245(1) (20) 

Using Galilean invariance, this gives/?(4) ~0.140, which agrees quite well 
with the estimate obtained from the width using the largest system size 
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Fig. 7. Data for the saturated interface width w(L) in five dimensions. 
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L = 7 0 .  However, it is clear that our analysis here cannot exclude the 
influence of systematic finite-size effects, which may further increase the 
value of/~(5). 

4.4. d = 5 + 1 ,  6 + 1 ,  and 7 + 1  

It is already clear from the results of the previous section that increas- 
ing the substrate dimension further leads to severe finite-size effects. 
However, we have undertaken an effort to obtain at least lower bound 
estimates for the scaling exponent //(d) above five dimensions. Besides 
being of fundamental interest in themselves, these estimates provide a check 
on the existence of a possible upper critical dimensionality d, for the kinetic 
roughening problem. Namely, even for relatively small system sizes it 
should be possible to distinguish between a power law behavior of the 
width as opposed to logarithmic behavior expected above du. 

The simulations for d =  5 + 1, 6 + 1, and 7 + 1 were done for L = 30, 
17, and 11, respectively, with three independent runs for each case. In 
Fig. 8 we summarize the results for w(t). Clear oscillations due to the 
layerwise growth are clearly visible for these relatively small systems. 
However, in each case a rather well-defined power law behavior can be 
seen, and using least squares fitting, we obtain the following estimates: 

"0.107(2) for d =  5 + 1 

/~(d)>~0.10(2) for d = 6 + l  (21) 

0.08(2) for d =  7 + 1 

Fig. 8. 
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Our results thus suggest that if a finite du exists, it has to be larger than 
eight. 

5. S U M M A R Y  A N D  D I S C U S S I O N  

To summarize, the purpose of this work has been to address three 
basic questions regarding the scaling exponents and universality within 
kinetic roughening, as described by the strong-coupling behavior of the 
KPZ equation. First, using a new fitting ansatz method, we have obtained 
quantitative estimates for the scaling exponents in four and five dimen- 
sions, which disagree with all existing theories and conjectures. Second, 
since our best estimate /3(4)=0.180(2) is in excellent agreement with the 
results of Forrest et  aL (4) for a different growth model, these numbers 
themselves should be universal (see also Fig. 9). Why the recent directed 
polymer simulations of Kim et  a/(27) differ from these new results is still an 
open question. Third, we have done additional simulations up to eight 
dimensions, finding no evidence for an upper critical dimension in the 
problem. 

Finally, we would like to discuss briefly the application of the fitting 
ansatz (9) to the determination of universal amplitude ratios of the growth 
model. The amplitudes are usually defined through the steady-state 
correlation function (16) 

C(r, t)-~ lira ([6h(r+ro, t+to)-6h(ro, to)] 2) 
tO ~ 0(3 

(22) 
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Fig. 9. Scaling of the interface width at d= 3 + 1, with/~(4) = 0.180. System sizes are L = 64, 
100, 150, 190, and 250. Scaling is much worse if fl(4) = 1/5 from Eq. (5) is used. 
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where 6h - h -/~, and for which C(r = 0, t --, oo) = Bt 2p and C(r ~ o% 
t = O)= Ar 2x. The universal crossover scale is defined as the ratio (16) 

2 ( A._A'~ 1/z 
g* = ~ \ BZ/2 j (23) 

The (nonuniversal) amplitudes A and B, along with )~, have recently been 
numerically (and analytically) determined for a variety of models in two 
dimensions, including the GRSOS model. (17-19) Although Eq. (22) is not 
the correlation function we have calculated in this work, we can use the 
ansatz (9) to estimate A by choosing 1 < to ~ L Z and approximating 

G(r, to) ~ G(r, to) ~ a( to) b( to)r 22 (24) 

for r ~ t 1/z. Thus, A ~ a(to) b(to), assuming the product ab remains at least 
approximately constant within the scaling regime. In two dimensions, we 
have checked this to be true to a good approximation, and data for the 
/2 = 3000 system give A ~ 0.71 +o.o4 which is in reasonable good agreement --0.06, 
with the numerical result A =0.81 of Krug et aL (17) from much larger 
systems. We note that for our small system we expect the finite-size effect 
for the amplitude to be significant. For reference, we also determined A(d)  
for d =  3 + 1 and 4 + 1. In the former case, ab is roughly independent of 
system size beyond L = 100, which gives ~ -t-0.o7 A(4) ~ 0.19_o.o4, while the single 
L = 50 system gives A(5)~  c~ ~1 +o.o4 . . . . . .  o.03, the latter most likely an overestimate 
due to the finite-size effect. In both cases the product ab slightly decreases 
as a function of time. In these higher dimensions neither 2 nor B has been 
determined. A more detailed discussion of these amplitudes is beyond the 
scope of this work, but would be desirable to probe further the issue of 
universality between different models. 
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NOTE ADDED IN PROOF 

For L =250 ,  we have improved our estimate for /~(4) = 0.178 _+ 0.01 
from the surface width. Using this new result an extrapolation to 1/L ~ 0 
gives/~(4) "~ 0.180. 
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